

The International Federation of Head and Neck Oncologic Societies

Current Concepts in Head and Neck Surgery and Oncology 2018

www.ifhnos.net

The International Federation of Head and Neck Oncologic Societies

Current Concepts in Head and Neck Surgery and Oncology 2018

Larynx Preservation - Non surgical-radiation therapy

Sandro V Porceddu

Director, Radiation Oncology Research Princess Alexandra Hospital, Brisbane, Australia Professor of Medicine, University of Queensland

What do these animals have in common with the human larynx?

descended larynx for vocalisation

Laryngeal Cancer

 Billroth performed the first laryngectomy in 1873

 Röntgen discovered x-rays 1895 & Pierre and Marie Curie discovered radium in 1898

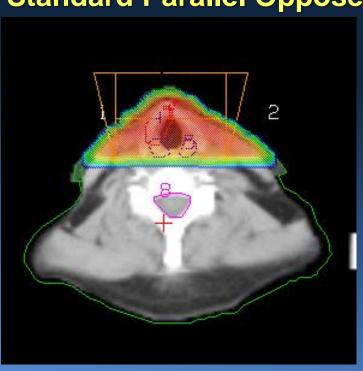
 Between 1920-1940 radiation therapy was the treatment of choice for his type of laryngeal cancer

Giacomo Puccini

1858-1924

- In 1924 Puccini diagnosed with laryngeal cancer while working on the opera *Turandot*
- Treated with the Columbia Apparatus – radium needles

Giacomo Puccini


1858-1924

"What an ordeal! God help me. This treatment will last no less than six weeks, it is terrible... I feel as though I have bayonets in my throat!"

Puccini died shortly after due to myocardial infarct brought on by a massive haemorrhage

External Beam Radiation Therapy

Standard Parallel Opposed

Highly Conformal

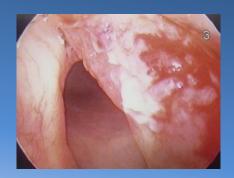
DEFINITIVE:

RT Alone

- Tis, N0: 60.75 Gy (2.25 Gy/fraction) to 66 Gy (2.0 Gy/fraction)
- T1, N0: 63 Gy (2.25 Gy/fraction) to 66 Gy (2.0 Gy/fraction)
- T2, N0: 65.25 (2.25 Gy/fraction) to 70 Gy (2.0 Gy/fraction)

Larynx preservation with radiotherapy

- Early laryngeal cancer
- Locally advanced laryngeal/hypopharyngeal cancer


- Case examples
- Radiotherapy contouring guidelines

EARLY LARYNGEAL CANCER

Early Laryngeal Cancer

- Spectrum of disease
 - T1 & T2
- Favourable disease
 - T2 glottis with extension onto supra- or subglottis, superficial & normal cord mobility
- Unfavourable disease
 - T2 glottis with deep extension and/or impaired mobility

Larynx Preservation Options

Radiation Therapy

- Endoscopic Surgery
 - Trans Oral Laser microsurgery (TOLMS)
 - Trans Oral Robotic Surgery (TORS)

Open partial laryngectomy

Early Laryngeal Cancer

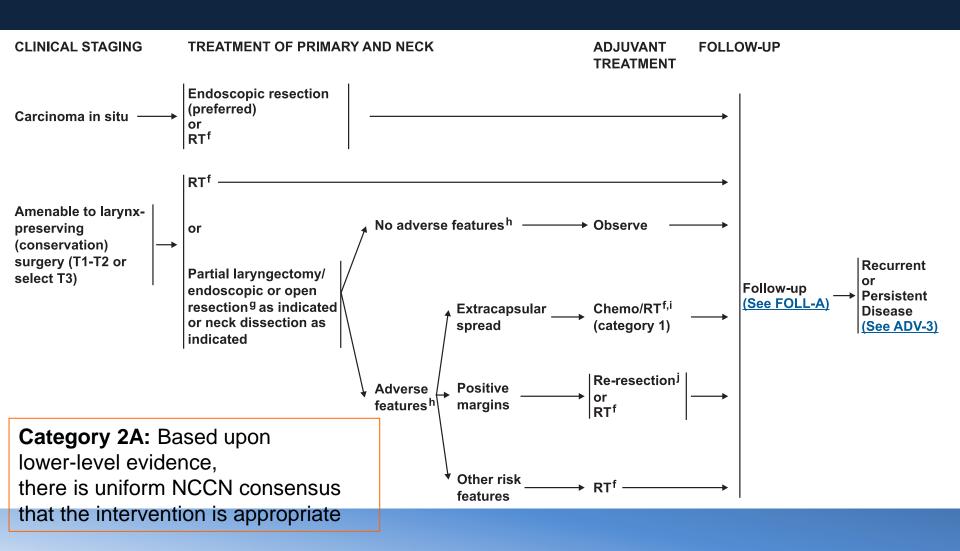
		Radiotherapy		Transoral Excision
5yr Local Control	T1	85-95%	T1	83-93%
	T2	68-80%	T2	73-89%
5 yr DSS	T1	93-98%	T1	96-99%
	T2	70-88%	T2	83-97%

Voice Quality Outcome

- Systematic review of functional outcome TOLM & RT
- 880pts; 448 TOLM, 442 RT
- Vocal outcomes (subjective analysis); 12 studies no difference, 3 superior RT
- Voice disability (patient perception); 5 studies no difference, 3 conflicting results
- Lack of uniformity of assessment of voice quality
- Neither modality clearly superior

Voice Quality Outcome

 Meta-analysis Voice Handicap Index (VHI) after treatment for T1 Glottic cancer with either RT or Laser (Laser=208, RT=91)


No difference in VHI

 Regardless of treatment modality voice quality is dependant on initial disease extent and amount of tissue removed

Is RT obsolete in early glottic larynx cancer?

- Given the comparable outcomes
 - Cure rates
 - Voice Quality
- Not accounting for
 - Cost-effectiveness comparisons
 - Patient preference
- Accepting the convenience of endoscopic resection
- Endoscopic resection is the preferred choice

NCCN Guidelines 2018 Glottic cancer

Is radiation therapy obsolete in early laryngeal cancer?

- Radiotherapy may no longer be the preferred initial choice
 - comparable outcomes both in local control & voice quality
 - relative low morbidity
- RT still has a role in selected cases
 - unfavourable anatomy
 - medically not suitable
 - widespread in-situ changes
 - deeply infiltrative
 - multiply failed laser procedures
 - patient preference

LOCALLY ADVANCED LARYNGEAL/HYPOPHARYNGEAL CANCER

Surgery/PORT vs chemo-radiotherapy

Guiding Principles in Management

- Functional outcome
 - Is it worth preserving?
 - What is the functional deficit
- Likelihood of clear macroscopic/microscopic margins
- Expected control rates & toxicities
- Aim to use the least number of modalities to obtain the required clinical outcome
- Biological characteristics of the tumour
 - chemo-responsive (to neoadjuvant)
 - recurrent disease

Larynx Preservation

- Early larynx preservation studies
 - VA study NEJM 1991
 - EORTC (Lefebvre JL et al) JNCI 1996
- Induction chemotherapy (Cisplatin/5FU)
 - Responders had definitive RT
 - Non-responders had surgery/PORT
- Larynx preservation rate 66% at 2 years
- No measure of functional outcomes
- No difference in survival

RTOG 91-11

Eligibility

- Stage III-IV SCC glottic or supraglottic larynx
- Surgical treatment would require total laryngectomy
- T1 excluded
- Large-volume T4 disease defined as a tumor penetrating through the cartilage or extending more than 1 cm into the base of the tongue were excluded

Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer RTOG 91-11

3-arm randomised study (n=547)

Overall survival no difference

Induction cispatin/5FU

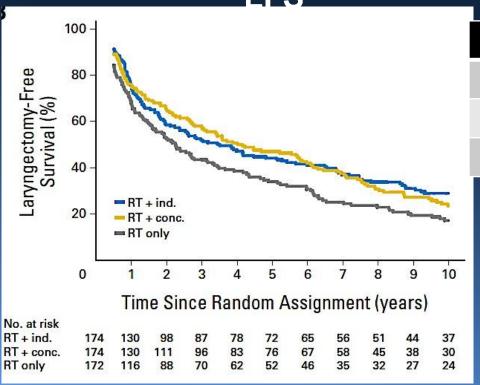
Concurrent ChemoRT*

88%

RT alone

70%

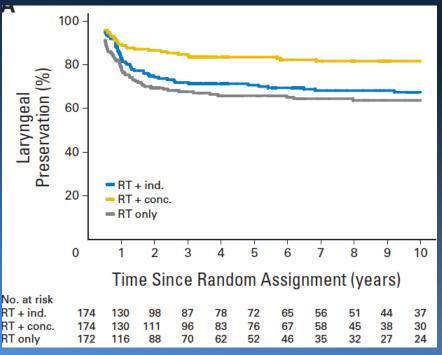
- *cisplatin 100mg/m² weeks 1, 4 & 7


- 70Gy over 7 weeks to gross disease

Forestiere A et al NEJM, 2003

75%

RTOG 91-11 10-year follow up


Primary Endpoint LFS

	10 yr LFS	p-value
RT + ICT	28.9	p=0.02
RT + cCT	23.5	p=0.03
RT	17.2	

RTOG 91-11 10-year follow up

Larynx preservation (LP)

	10 yr LP	p-value
RT + ICT	67.5	
RT + cCT	81.7	p=0.02
RT	63.8	p<0.001

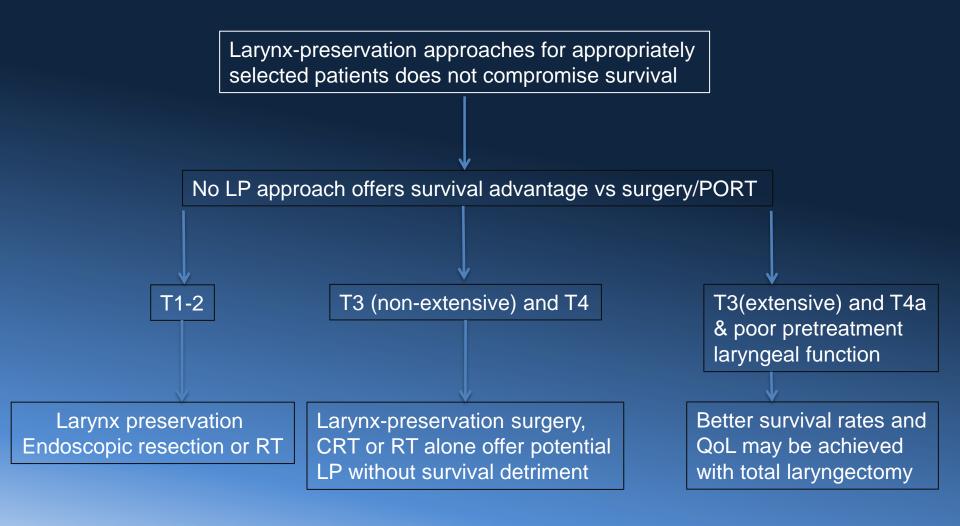
- No difference in survival
- No difference in late effects
- Deaths not attributed to larynx cancer or treatment were higher in the concomitant arm

Functional outcome

Alive, disease free, retained larynx, over 2-5yrs

	RT - ICT	RT - cCT	RT
Impaired speech/voice quality	3-9%	4-8.5%	5-8.5%
Soft foods only	13-14%	17-24%	10-17%
Liquids only	<4%	<4%	<4%
Inability to swallow	<3%	<3%	<3%

^{*}no substantive differences in quality of function, but limited numbers


JOURNAL OF CLINICAL ONCOLOGY

ASCO SPECIAL ARTICLE

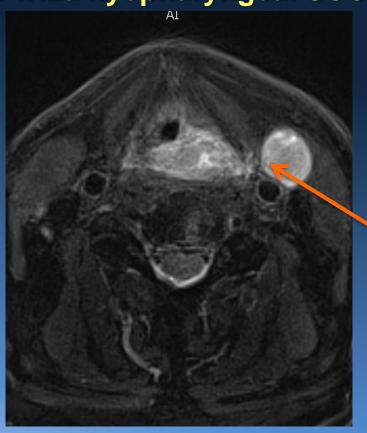
Use of Larynx-Preservation Strategies in the Treatment of Laryngeal Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update

Arlene A. Forastiere, Nofisat Ismaila, Jan S. Lewin, Cherie Ann Nathan, David J. Adelstein, Avraham Eisbruch, Gail Fass, Susan G. Fisher, Scott A. Laurie, Quynh-Thu Le, Bernard O'Malley, William M. Mendenhall, Snehal Patel, David G. Pfister, Anthony F. Provenzano, Randy Weber, Gregory S. Weinstein, and Gregory T. Wolf

Larynx-preservation guidelines for laryngeal cancer

Laryngeal/Hypopharyngeal Ca

T3N0 Supraglottic SCC

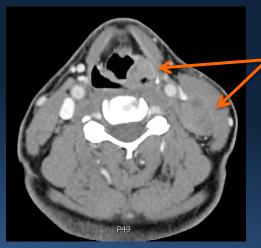


Preservation

- No extension through laryngeal cartilage or into soft tissues
- Swallowing function intact
- At least one cord mobile
- Airway reasonable
- Voice worth preserving
- ECOG <u><</u>2
- Lower threshold for offering CRT for supraglottic ca due to lower rate of long term swallowing issues and greater control rates

Laryngeal/Hypopharyngeal Ca

T4N2a hyopharyngeal SCC



Non-preservation

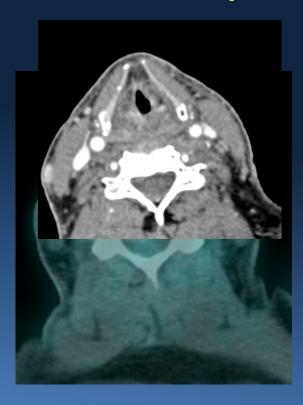
- Destroyed laryngeal cartilage/structures
- Extension through laryngeal cartilage and/or soft tissues
- Aspirating (Fluid/solids)
- Fixed bilateral cords
- Severe airway compromise
- Marked poor voice quality
- ECOG 3
- Lower threshold for offering surgery for hypopharyngeal ca due to greater rate of long term swallowing issues and lower control rates

Induction preservation case

T3N2b Hypopharyngeal SCC

- 46 year old man
- 60 pack years
- Bulky left neck mass
- No airway obstruction
- No dysphagoa
- No weight loss
- ECOG 0
- Left level III 4x3cm nodal mass
- Mass involving left piriform sinus extending to base of tongue and immobile left cord

Induction chemotherapy - TPF


- Borderline organ preservation cRT
- High risk nodal N2c/N3

T3N2bM0 Hypopharyngeal SCC

Post x2 cycles of TPF

Concurrent HD cisplatin/70Gy



Contouring guidelines

(Gregoire V et al Radiother Oncol 2018)

T2 Right Piriform Sinus Ca

Gross Tumour Volume (GTV)

Primary Tumour CTV = 5mm + 5mm on GTV-p

- CTV1 = 5mm GTV-p
- CTV2 = 5mm + CTV1
- Cropping off anatomic boundaries/air cavities

Blue contour = 10mm isotropic expansion on GTV

Green contour = 10mm isotropic expansion on GTV with cropping = CTV2

Yellow contour = 5mm isotropic expansion on GTV with cropping = CTV1

Concluding remarks

- Radiotherapy still has a role in early laryngeal cancer
- Concomitant radiotherapy is superior to radiotherapy alone in preserving larynx
- Induction chemotherapy has a role in selected cases for larynx-preservation treatment
- Careful selection for larynx preservation based on disease extent and organ function warranted